Environmental pollution has been one of the main challenges for sustainable development. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy to power devices. The focus is on an alternative approach to scavenge energy from the environment. This book presents harvesting methodologies to evaluate the potential effectiveness of different techniques and provides an overview of the methods and challenges of harvesting energy using piezoelectric materials. Piezoelectric energy harvesters have many applications, including sensor nodes, wireless communication, microelectromechanical systems, handheld devices, and mobile devices. The book also presents a new approach within piezoelectric energy harvesting using the impact of raindrops. The energy-harvesting model presented is further analyzed for single-unit harvester and an array of multiple harvesters to maximize the efficiency of the device.

Sustainable Energy Harvesting Technologies

Fundamental Biomaterials: Ceramics provides current information on ceramics and their conversion from base materials to medical devices.
Initial chapters review biomedical applications and types of ceramics, with subsequent sections focusing on the properties of ceramics, and on corrosion, degradation and wear of ceramic biomaterials. The book is ideal for researchers and professionals in the development stages of design, but is also helpful to medical researchers who need to understand and communicate the requirements of a biomaterial for a specific application. This title is the second in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on material properties, behavior, biocompatibility and applications. In addition, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels. Provides current information on findings and developments of ceramics and their conversion from base materials to medical devices. Includes analyses of the types of ceramics and a discussion of a range of biomedical applications and essential properties, including information on corrosion, degradation and wear, and lifetime prediction of ceramic biomaterials. Explores both theoretical and practical aspects of ceramics in biomaterials.

Innovation, Communication and Engineering

Materials for Sustainable Energy Applications

This new edition of our 2016 book provides insight into designing intelligent materials and structures for special application in engineering. Literature is updated throughout and a new chapter on optics fibers has been added. The book discusses simulation and experimental determination of physical material properties, such as piezoelectric effects, shape memory, electro-rheology, and distributed control for vibrations minimization.

Galloping Based Wind Energy Harvesting Using Piezoelectric Materials

As of 2013, the number of mobile electronic devices has surpassed the number of humans on the planet. Interminable mobility and the need to stay connected have necessitated the development of mobile and uninterrupted power sources for these devices. Whereas the power requirements and size of microelectronic devices have shrunk drastically, the corresponding improvement in energy storage technology has been disproportionate. Many real-world applications demand a self-contained power source that needs minimum maintenance and that can generate energy for long, indefinite periods. Ambient energy, which is abundant in nature and in human activity, has the potential to be an infinite and renewable energy source. Owing to rapid advances in technology, it is now possible to convert ambient energy into electrical energy, which finds use in numerous fields such as defense, aerospace, structural health monitoring, environmental monitoring, wildlife monitoring, medical diagnosis, and healthcare. Ambent energy harvesting has the potential to replace conventional sources, which are limited and adversely affect the environment, and facilitate clean, green, and sustainable energy for all.

Sustainable Materials for Next Generation Energy Devices

In the early 21st century, research and development of sustainable energy harvesting (EH) technologies have started. Since then, many EH technologies have evolved, advanced and even been successfully developed into hardware prototypes for sustaining the operational lifetime of
Energy harvesting is a technology that harvests freely available renewable energy from the ambient environment to recharge or put used energy back into the energy storage devices without the hassle of disrupting or even discontinuing the normal operation of the specific application. With the prior knowledge and experience developed over a decade ago, progress of sustainable EH technologies research is still intact and ongoing. EH technologies are starting to mature and strong synergies are formulating with dedicate application areas. To move forward, now would be a good time to setup a review and brainstorm session to evaluate the past, investigate and think through the present and understand and plan for the future sustainable energy harvesting technologies.

Development of Energy Harvesting Device Using Piezoelectric Material

Mechanical Design of Piezoelectric Energy Harvesters: Generating Electricity from Human Walking provides the state-of-the-art, recent mechanical designs of piezoelectric energy harvesters based on piezoelectric stacks. The book discusses innovative mechanism designs for energy harvesting from multidimensional force excitation, such as human walking, which offers higher energy density. Coverage includes analytical modeling, optimal design, simulation study, prototype fabrication, and experimental investigation. Detailed examples of their analyses and implementations are provided. The book's authors provide a unique perspective on this field, primarily focusing on novel designs for PZT Energy harvesting in biomedical engineering as well as in integrated multi-stage force amplification frame. This book presents force-amplification compliant mechanism design and force direction-transmission mechanism design. It explores new mechanism design approaches using piezoelectric materials and permanent magnets. Readers can expect to learn how to design new mechanisms to realize multidimensional energy harvesting systems. Provides new mechanical designs of piezoelectric energy harvesters for multidimensional force excitation. Contains both theoretical and experimental results. Fully supported with real-life examples on design, modeling and implementation of piezoelectric energy harvesting devices.

Efficient Energy Conversion Circuits for Hi-way Road Traffic Energy Harvesting Using Piezoelectric Devices

Piezoelectric Aeroelastic Energy Harvesting explains the design and implementation of piezoelectric energy harvesting devices based on fluid-structure interaction. There is currently an increase in demand for low power electronic instruments in a range of settings, and recent advances have driven their energy consumption downwards. As a result, the possibility to extract energy from an operational environment is of growing significance to industry and academic research globally. This book solves problems related to the integration of smart structures with the aeroelastic system, addresses the importance of the aerodynamic model on accurate prediction of the performance of the energy harvester, describes the overall effect of the piezoelectric patch on the dynamics of the system, and explains different mechanisms for harvesting energy via fluid-structure interaction. This wealth of innovative technical information is supported by introductory chapters on piezoelectric materials, energy harvesting and circuits, and fluid structure interaction, opening this interdisciplinary topic up for readers with a range of backgrounds. Provides new designs of piezoelectric energy harvesters for fluid-structure interaction. Explains how to correctly model aerodynamics for effective aeroelastic energy harvesting. Numerical examples allow the reader to practice the design, modeling and implementation of piezoelectric energy harvesting devices.

Proceedings of Second International Conference on Smart Energy and Communication
Volume is indexed by Thomson Reuters BCI (WoS). The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technologies and particular applications are also presented. This book is divided into two parts, each subdivided into chapters. Part I concerns fundamentals. Chapter 1 reports the discoveries, standard issues and various materials involved with energy harvesting. Chapter 2 presents electromechanical models enabling an understanding of how energy harvesting systems behave. The vibration theory and designs for various piezoelectric energy harvesting structures are addressed in Chapter 3. Chapter 4 describes the analytical expressions for the energy flow in piezoelectric energy harvesting systems, in particular, with cymbal and flexible transducers. A description of the conversion enhancement for powering low-energy consumption devices is presented in Chapter 5. Part II concerns Applications and Case Studies. It begins with Chapter 6, in which the principles and applications of piezoelectric nanogenerators are reported. Chapter 7 describes the utilization of energy harvesting from low-frequency energy sources. There are more ways to use vibrational energy than waste heat. However, Chapter 8 presents the fundamentals of an important application of heat conversion with a copolymer. Finally, commercial energy harvesting products and a technological forecast are provided in Chapter 9.

Advances in Energy Harvesting Methods

The field of microelectronics had a remarkable progress since its beginnings in 1960s, which led to the advent of myriad new electronic devices that found widespread usage in daily life. Continuous advances in CMOS and MEMS technologies reduced the cost, size, weight, and power requirements of these devices, enabling the realization of distributed systems such as wireless sensor networks. However, due to much slower pace of innovation, currently available battery technologies continue to dictate the size, weight and cost of these systems. There are further concerns brought by the batteries regarding the environmental effects or feasibility of dead battery replacement in distributed or embedded systems. As a result of this problem, there has been a growing research impetus on energy harvesting technologies, which are expected to alleviate the problems brought by the fixed capacity energy sources in electronic devices. This dissertation proposes a new class of MEMS-scale piezoelectric energy harvesters that have the potential to be monolithically integrated with CMOS circuits. Proposed devices will utilize polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE), a piezoelectric polymer with an impressive electromechanical coupling factor of 0.3. Its energy harvesting potential was evaluated using theoretical analyses and finite element method (FEM) simulations and compared with other CMOS compatible piezoelectric materials. Various architectural options for the mechanical and electrical structure of the energy harvester were examined and most promising options were determined. The process for the fabrication of PVDF-TrFE thin films was optimized to yield high quality films with strong ferroelectric and piezoelectric properties. A comprehensive characterization study was performed to measure the dielectric, ferroelectric, and piezoelectric properties of the fabricated films. Cantilever type MEMS scale piezoelectric energy harvesters (PEH) were fabricated and characterized. Maximum power output density on purely resistive loads in response to a 1.0 g input acceleration was measured as 27.8 nW/mm² from a (1800 [µm] x 2000 [µm]) device at its resonance frequency of 192.5 Hz. A power conditioning circuit, based on synchronous switching on inductor technique, was also designed and integrated with the fabricated prototypes. The circuit, which draws 250 nW power from ±1 V dual supplies at 200 Hz, improved the DC power output of the PEHs by 165%. Using the same (1800 [µm] x 2000 [µm]) prototype in combination with the circuit, a maximum power of 140 nW was
transferred to a DC load under 1.0 g acceleration. The results obtained throughout the course of this dissertation work proved that PVDF-TrFE can be used in MEMS scale energy harvesting devices. CMOS compatible fabrication process of the polymer makes it possible to integrate these energy harvesters with CMOS circuits on the same substrate. This monolithic integration approach would improve the unit cost, size, and reliability compared to integration at higher levels and therefore, can find use in applications such as wireless sensors networks, structure health monitoring systems, and wide area surveillance applications.

Piezoelectric Energy Harvesting

The electromechanical coupling effect introduced by piezoelectric vibration energy harvesting (PVEH) presents serious modeling challenges. This book provides close-form accurate mathematical modeling and experimental techniques to design and validate dual function PVEH vibration absorbing devices as a solution to mitigate vibration and maximize operational efficiency. It includes in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), precisely identifying electrical loads that harvest maximum power and induce maximum electrical damping. The author's detailed analysis will be useful for researchers working in the rapidly emerging field of vibration based energy harvesting, as well as for students investigating electromechanical devices, piezoelectric sensors and actuators, and vibration control engineering.

Low-frequency Piezoelectric Energy Harvester with Novel 3D Folded Zigzag Design and High Power Density

Vibration Energy Harvesting Using Piezoelectric Material

This book is a single-source guide to nonlinearity and nonlinear techniques in energy harvesting, with a focus on vibration energy harvesters for micro and nanoscale applications. The authors demonstrate that whereas nonlinearity was avoided as an undesirable phenomenon in early energy harvesters, now it can be used as an essential part of these systems. Readers will benefit from an overview of nonlinear techniques and applications, as well as deeper insight into methods of analysis and modeling of energy harvesters, employing different nonlinearities. The role of nonlinearity due to different aspects of an energy harvester is discussed, including nonlinearity due to mechanical-to-electrical conversion, nonlinearity due to conditioning electronic circuits, nonlinearity due to novel materials (e.g., graphene), etc. Coverage includes tutorial introductions to MEMS and NEMS technology, as well as a wide range of applications, such as nonlinear oscillators and transducers for energy harvesters and electronic conditioning circuits for effective energy processing.

Wind Energy Harvesting

"Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/numerical), practical aspects (including software/hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions
and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an Associate Professor at the Department of Civil Engineering, Indian Institute of Technology Delhi, India.

Nanostructured Piezoelectric Energy Harvesters

Cantilevers have been widely used for vibration energy harvesting applications using piezoelectric materials due to their simple geometries, frequency tune-ability, and closed form analytical solution. Recent studies have focused on overcoming some of the drawbacks for this configuration, which include low power density and natural frequencies much higher than those available in the environment. Some have investigated two-dimensional geometries, such as a zigzag shaped design, or meandering or elephant design. The previously researched designs offer a higher flexibility that allows for much smaller fundamental natural frequencies, and hence, improved power densities. The presented work extends this idea by offering a novel, three-dimensional design called "folded zigzag" that provides a much better flexibility than the aforementioned units, and aids significantly with natural frequency requirements while having a small footprint. The research compares the proposed design to the planar symmetric zigzag design for the same footprint area. This paper demonstrates that the proposed geometry offers a much lower resonating frequency, and results in much improved strain node geometry by avoiding torsion in the fundamental modes of operation. This significantly eases the fabrication by avoiding charge cancellations when mounting continuous electrodes. In addition to that, the new design being more flexible due to its geometry, has higher strain, producing a larger voltage. The graphs produced using validated simulations compare the power densities of various designs. More specifically, the proposed design's power density is compared to the conventional planar symmetric zigzag design's power density. The results show that the individual layers of the new design can produce higher power density than a planar symmetric zigzag. This work also outlines the manufacturing process used to fabricate a folded zigzag design with piezoelectric material, which involves strain matching the electrodes, on both the top and bottom layer. Overall, not only is the folded zigzag design more resistant to the formation of strain nodes than the planar zigzag design but it also produces higher power at a low natural frequency, making it suitable for wireless sensor technology and other applications.

Smart Materials in Structural Health Monitoring, Control and Biomechanics

Piezoelectric Vibration Energy Harvesting and Its Application to Vibration Control

Advances in Energy Harvesting Methods presents a state-of-the-art understanding of diverse aspects of energy harvesting with a focus on: broadband energy conversion, new concepts in electronic circuits, and novel materials. This book covers recent advances in energy harvesting using different transduction mechanisms; these include methods of performance enhancement using nonlinear effects, non-harmonic forms of excitation and non-resonant energy harvesting, fluidic energy harvesting, and advances in both low-power electronics as well as material science. The contributors include a brief literature review of prior research with each chapter for further reference.

Mechanical Design of Piezoelectric Energy Harvesters
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Shock & Vibration, Aircraft/Aerospace, and Energy Harvesting, Volume 9

Sustainable Materials for Next Generation Energy Devices: Challenges and Opportunities presents the latest state-of-the-art knowledge and innovation related to environmentally-friendly functional materials that can be developed for, and employed in, producing a feasible next generation of energy storage and conversion devices. The book is broken up into three sections, covering Energy Storage, Energy Conversion and Advanced Concepts. It will be an important reference for researchers, engineers and students who want to gain extensive knowledge in green and/or sustainable functional materials and their applications. Provides a concise resource for readers interested in sustainable and green functional materials for energy conversion and storage devices Emphasizes sustainable and green concepts in the design of energy devices based on renewable functional materials Presents a survey of both the challenges and opportunities available for renewable functional materials in the development of energy devices

Nonlinearity in Energy Harvesting Systems

Piezoelectric materials are being explored in this research to harvest mechanical deformations and vibrations on highway pavement produced by passenger and cargo vehicles, converting the mechanical energy to electric energy. Optimal Converter with high efficiency and reliability are required to capture the charges and store the energy in the form of hybrid capacitors or batteries in order to provide sensors and communication systems with sustained source of energy. A number of converter circuits have been designed, simulated, and tested. An EVI (Energy Voltage Current) converter with a conversion efficiency of 85% and better is proposed, constructed, and tested (to have achieved 86-92 % conversion efficiency). The DC energy harvested from the converter is used to charge the battery or hybrid capacitors based on their charging and storage characteristics for a better efficiency. The piezoelectric devices utilized in these tests are lead zirconium titanate (PZT) ceramics in various forms including modified PZT ceramic rods (PZT-5A), thin layer unimorph composite (Thunder X7R), embedded PZT rods 1:3 composite, and various stacked and composite-stacked samples. All these piezoelectric materials greatly depend on load matching to
harvest maximum electric power. In addition to voltage regulation, the EVI converter also plays a vital role in optimizing load for various PZT devices to achieve maximum power efficiency. Custom designed signal-amplified shaker, MTS electrodynamic testing system (Acumen III), and universal testing machine (UTM 25) are used for testing these piezoelectric samples and transducers to evaluate the range of voltage regulation, the effectiveness in load optimization, and the power optimization efficiency of the converter circuit. The novel design of the EVI converter is reported in this thesis and the testing results indicate that it can be utilized not only as an AC-DC converter but also as a DC-DC converter. The EVI converter developed in this work is highly promising to be adopted in the piezoelectric highway energy harvesting modules.

Energy Harvesting Using Piezoelectric Thick Films Fabricated by a Sol-gel Process

This book gathers selected papers presented at the 2nd International Conference on Smart Energy and Communication (ICSEC 2020), held at Poornima Institute of Engineering and Technology, Jaipur, India, on March 20-21, 2020. It covers a range of topics in electronics and communication engineering and electrical engineering, including analog circuit design, image processing, wireless and microwave communication, optoelectronics and photonic devices, nano-electronics, renewable energy, smart grid, power systems and industry applications.

Vibration Energy Harvesting Using Piezoelectric Material

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Energy Harvesting Systems

The impending energy crisis brought on by the running out of finite and non-homogenously distributed fossil fuel reserves and the worldwide increase in energy demand has prompted vast research in the development of sustainable energy technologies in the last few decades. However, the efficiency of most of these new technologies is relatively small and therefore it needs to be increased to eventually replace conventional technologies based on fossil fuels. The required efficiency increase primarily relies on the ability to improve the performance of the functional materials which are at the heart of these technologies. The purpose of this book is to give a unified and comprehensive presentation of the fundamentals and the use and design of novel materials for efficient sustainable energy applications, such as conversion, storage, transmission, and consumption. The book presents general coverage of the use and design of advanced materials for sustainable energy applications. Thus, the book addresses all the relevant aspects, such as materials for energy conversion, storage, transmission, and consumption.
Dynamics of Mechanical Systems with Non-Ideal Excitation

This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.

Ambient Energy Harvesting Using Piezoelectric Materials

Wearable electronics, wireless devices, and other mobile technologies have revealed a deficit and a necessity for innovative methods of gathering and utilizing power. Drawing on otherwise wasted sources of energy, such as solar, thermal, and biological, is an important part of discovering future energy solutions. Innovative Materials and Systems for Energy Harvesting Applications reports on some of the best tools and technologies available for powering humanity's growing thirst for electronic devices, including piezoelectric, solar, thermoelectric, and electromagnetic energies. This book is a crucial reference source for academics, industry professionals, and scientists working toward the future of energy.

Innovative Materials and Systems for Energy Harvesting Applications

Using Piezoelectric Technology to Harvest Energy from Drums and Inspire an Engaging High School Classroom Experience

The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines. Reviews wide range of energy harvesting including solar, wind, biomechanical and more Discusses ferroelectric materials and their application to high energy density capacitors Includes review of fundamental mechanisms of energy harvesting and energy solutions, their design and current applications, and future trends and challenges
Electromechanical modeling efforts in the research field of vibration-based energy harvesting have been mostly focused on deterministic forms of vibrational input as in the typical case of harmonic excitation at resonance. However, ambient vibrational energy often has broader frequency content than a single harmonic, and in many cases it is entirely stochastic. As compared to the literature of harvesting deterministic forms of vibrational energy, few authors presented modeling approaches for energy harvesting from broadband random vibrations. These efforts have combined the input statistical information with the single-degree-of-freedom (SDOF) dynamics of the energy harvester to express the electromechanical response characteristics. In most cases, the vibrational input is assumed to have broadband frequency content, such as white noise. White noise has a flat power spectral density (PSD) that might in fact excite higher vibration modes of an electroelastic energy harvester. In particular, cantilevered piezoelectric energy harvesters constitute such continuous electroelastic systems with more than one vibration mode. The main component of this thesis presents analytical and numerical electroelastic modeling, simulations, and experimental validations of piezoelectric energy harvesting from broadband random excitation. The modeling approach employed herein is based on distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given PSD or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first one of the two numerical solution methods employs the Fourier series representation of the base acceleration history in a Runge-Kutta-based ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H cantilever bimorph under different random excitation levels. In addition to base-excited cantilevered configurations, energy harvesting using prismatic piezoelectric stack configurations is investigated. Electromechanical modeling and numerical simulations are given and validated through experiments for a multi-layer PZT-5H stack. After validating the electromechanical models for specific experimentally configurations and samples, various piezoelectric materials are compared theoretically for energy harvesting from random vibrations. Finally, energy harvesting from narrowband random vibrations using both configurations are investigated theoretically and experimentally.

Energy Harvesting with Piezoelectric and Pyroelectric Materials

Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Volume 9: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the ninth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, including papers on: Energy Harvesting Adaptive Support Shock Calibration Operating Data Applications

Multiferroic Materials

Piezoelectric Vibration Energy Harvesting
Using piezoelectric materials to harvest the energy of vibration is a popular and fast-growing field of study. This report details an attempt to use piezoelectric energy harvesting techniques to support an interesting and engaging lab experience for high school engineering students in which the vibration of musical instruments (specifically drums, for this report) is harnessed to power a string of decorative LEDs. The likelihood of the energy harvesting actually being successful enough to light the LEDs was not known before undertaking this lab, so the goals of the project became twofold: 1. Conduct the experiment from scratch to determine if a substantial amount of energy can be harvested from the instruments (enough to reach the goal of lighting the LEDs), and 2. Identify how this lab experience (or one similar to it, if the goal of lighting the LEDs is unattainable) can be beneficial to high school engineering students. The purpose of this report is to summarize the research that was carried out to harvest energy from drums using piezoelectric technology, and to outline how similar lab exercises can be utilized in the high school engineering classroom setting.

MEMS Scale CMOS Compatible Energy Harvesters Using Piezoelectric Polymers for Sustainable Electronics

This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being investigated for the development of nanostructured piezoelectric energy harvesting devices, also known as nanogenerators. There is growing interest in strategies for energy harvesting that use a variety of existing and well-known materials in new morphologies or architectures. A key change of morphology to enable new functionality is the nanostructuring of a material. One area of particular interest is self-powered devices based on portable energy harvesting. The charging of personal electronic equipment and other small-scale electronic devices such as sensors is a highly demanding environment that requires innovative solutions. The output of these so-called nanogenerators is explained in terms of the requirements for self-powered applications. The authors summarise the range of production methods used for nanostructured devices, which require much lower energy inputs than those used for bulk systems, making them more environmentally friendly and also compatible with a wide range of substrate materials.

Intelligent Materials and Structures

"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.

Piezoelectric Energy Harvesting Via Frequency Up-conversion Technology
In this book the dynamics of the non-ideal oscillatory system, in which the excitation is influenced by the response of the oscillator, is presented. Linear and nonlinear oscillators with one or more degrees of freedom interacting with one or more energy sources are treated. This concerns for example oscillating systems excited by a deformed elastic connection, systems excited by an unbalanced rotating mass, systems of parametrically excited oscillator and an energy source, frictionally self-excited oscillator and an energy source, energy harvesting system, portal frame - non-ideal source system, non-ideal rotor system, planar mechanism - non-ideal source interaction. For the systems the regular and irregular motions are tested. The effect of self-synchronization, chaos and methods for suppressing chaos in non-ideal systems are considered. In the book various types of motion control are suggested. The most important property of the non-ideal system connected with the jump-like transition from a resonant state to a non-resonant one is discussed. The so called ‘Sommerfeld effect’, resonant unstable state and jumping of the system into a new stable state of motion above the resonant region is explained. A mathematical model of the system is solved analytically and numerically. Approximate analytical solving procedures are developed. Besides, simulation of the motion of the non-ideal system is presented. The obtained results are compared with those for the ideal case. A significant difference is evident. The book aims to present the established results and to expand the literature in non-ideal vibrating systems. A further intention of the book is to give predictions of the effects for a system where the interaction between an oscillator and the energy source exist. The book is targeted at engineers and technicians dealing with the problem of source-machine system, but is also written for PhD students and researchers interested in non-linear and non-ideal problems.

Modern Piezoelectric Energy-Harvesting Materials

The purpose of this thesis was to investigate the mechanics of galloping based energy harvesting systems and to create techniques which will allow for energy harvesting at minimal wind speeds, while still producing an acceptable power output for sensor nodes used in wireless sensor networks. In order to achieve this, three main objectives were set. The first objective was to develop an analytical model based on a non-linear approximation technique known as the harmonic balance method. The analytical model was then qualitatively validated by comparing it with a numerical simulation and also a previously validated simulation technique involving equivalent circuit modelling (ECM). Following this, the model was also validated through comparing with wind tunnel experiments with a prototype GPEH. The second objective was to use the validated analytical model to investigate the effects of the electromechanical coupling strength \((k_e^2) \) on a GPEH, particularly on the cut-in wind speed, output power and the electrical damping created. This was achieved by performing a parametric study on the desired output of a GEPH over a range of wind speeds and \(k_e^2 \) values. Using this technique, it was found that increasing the \(k_e^2 \) also increased all three of these variables, but then they would interact in different ways. The final objective was to investigate the feasibility of utilizing a synchronized switch harvesting on inductor (SSHI) interface circuit to regulate and enhance the power output of a GPEH. This was achieved by running ECM simulations for the two configurations of the SSHI interface (Parallel SSHI and Series SSHI) for both high and low wind speeds, and comparing the data with a simulation utilizing a standard circuit interface. Wind tunnel experiments were also performed to confirm the simulation data. From the experimental results, it was discovered that the series SSHI circuit was not acceptable as an interface for GPEH, as it produced a lower power output for every configuration of the experiments. The parallel SSHI also failed to surpass the standard interface circuit in lower wind speeds, but shows promise in higher wind speeds as it achieved a maximum of 102% increase in power output.

Ferroelectric Materials for Energy Harvesting and Storage
This book provides the fundamental concepts required for the development of an efficient small-scale wind turbine. For centuries, engineers and scientists have used wind turbines of all shapes and sizes to harvest wind energy. Large-scale wind turbines have been successful at producing great amounts of power when deployed in sites with vast, open space, such as in fields or in offshore waters. For environments with limited space, such as dense urban environments, small-scale wind turbines are an attractive alternative for taking advantage of the ubiquity of wind. However, many of today's tools for aerodynamic design and analysis were originally developed for large-scale turbines and do not scale down to these smaller devices. Arranged in a systematic and comprehensive manner, complete with supporting examples, Wind Energy Harvesting: Micro- To Small-Scale Turbines is a useful reference for undergraduate and graduate level classes on energy harvesting, sustainable energy, and fluid dynamics, and an introduction to the field for non-technical readers.

Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Kinetic energy harvesting converts movement or vibrations into electrical energy, enables battery free operation of wireless sensors and autonomous devices and facilitates their placement in locations where replacing a battery is not feasible or attractive. This book provides an introduction to operating principles and design methods of modern kinetic energy harvesting systems and explains the implications of harvested power on autonomous electronic systems design. It describes power conditioning circuits that maximize available energy and electronic systems design strategies that minimize power consumption and enable operation. The principles discussed in the book will be supported by real case studies such as battery-less monitoring sensors at water waste processing plants, embedded battery-less sensors in automotive electronics and sensor-networks built with ultra-low power wireless nodes suitable for battery-less applications.

Piezoelectric Energy Harvesting

Ambient energy harvesting has attracted significant attention over the last years for applications such as wireless sensors, implantable devices, health monitoring systems, and wearable devices. The methods of vibration-to-electric energy conversion can be included in the following categories: electromagnetic, electrostatic, and piezoelectric. Among various techniques of vibration-based energy harvesting, piezoelectric transduction method has received the most attention due to the large power density of the piezoelectric material and its simple architectures. In contrast to electromagnetic energy harvesting, the output voltage of a piezoelectric energy harvester is high, which can charge a storage component such as a battery. Compared to electrostatic energy harvester, the piezoelectric energy harvester does not require an external voltage supply. Also, piezoelectric harvesters can be manufactured in micro-scale, where they show better performance compared to other energy harvesters, owing to the well-established thick-film and thin-film fabrication techniques. The main drawback of the linear piezoelectric harvesters is that they only retrieve energy efficiently when they are excited at their resonance frequencies, which are usually high, while they are less efficient when the excitation frequency is distributed over a broad spectrum or is dominant at low frequencies. High-frequency vibrations can be found in machinery and vehicles could be used as the energy source but, most of the vibration energy harvesters are targeting at low-frequency vibration sources which are more achievable in the natural environment. One way to overcome this limitation is by using the frequency-up-conversion technology via impacts, where the source of the impacts can be one or two stoppers or more massive beams. The impact makes the piezoelectric beam oscillate in its resonance frequency and brings nonlinear behavior into the system. The goal of this research is to enhance the piezoelectric harvester's energy retrieving performance from ambient vibrations with low or varying frequencies. In this work, impact-based piezoelectric energy harvesters were studied by discontinuous mapping dynamics.
Discontinuous dynamics has been extensively applied in mechanical dynamics and physics field. Since the nature of the most environmental vibrations is periodic, periodic motions of the impact-based piezoelectric harvester were studied. Four different possible motion phases have been identified and categorized based on the performance of the output energy of the system. Many periodic motions are possible depending on the physical properties of the energy harvester setup. So far, we studied three different periodic motions of two beams interacting with each others, where period-1 and period-2 motions of the system are predicted. The stability of the system were analyzed and bifurcation graphs for each periodic motions were presented.

Energy Harvesting from Random Vibrations of Piezoelectric Cantilevers and Stacks

This volume represents the proceedings of the 2013 International Conference on Innovation, Communication and Engineering (ICICE 2013). This conference was organized by the China University of Petroleum (Huadong/East China) and the Taiwanese Institute of Knowledge Innovation, and was held in Qingdao, Shandong, P.R. China, October 26 - November 1, 2013. The conference received 653 submitted papers from 10 countries, of which 214 papers were selected by the committees to be presented at ICICE 2013. The conference provided a unified communication platform for researchers in a wide range of fields from information technology, communication science, and applied mathematics, to computer science, advanced material science, design and engineering. This volume enables interdisciplinary collaboration between science and engineering technologists in academia and industry as well as networking internationally. Consists of a book of abstracts (260 pp.) and a USB flash card with full papers (912 pp.).

Energy Harvesting Technologies

This book covers the topic of vibration energy harvesting using piezoelectric materials. Piezoelectric materials are analyzed in the context of their electromechanical coupling, heterogeneity, microgeometry and interrelations between electromechanical properties. Piezoelectric ceramics and composites based on ferroelectrics are advanced materials that are suitable for harvesting mechanical energy from vibrations using inertial energy harvesting which relies on the resistance of a mass to acceleration and kinematic energy harvesting which couples the energy harvester to the relative movement of different parts of a source. In addition to piezoelectric materials, research efforts to develop optimization methods for complex piezoelectric energy harvesters are also reviewed. The book is important for specialists in the field of modern advanced materials and will stimulate new effective piezotechnical applications.

Copyright code: 379539803f54e36175416724753b522a